Orbit of Proxima Centauri Determined After 100 Years

 

The research was leaded by Pierre Kervella, astronomer od UMI-FCA and reseacher of the Astronomy Department, University of Chile

Interest in our neighbouring Alpha Centauri star system has been particularly high since the recent discovery of an Earth-mass planet, known as Proxima b, orbiting the system’s third star — and the closest star to the Sun — Proxima Centauri. While the system’s larger stellar pair, Alpha Centauri A and B, appear to have a proper motion on the sky that is very similar to that of the smaller, fainter Proxima Centauri, it has not been possible to demonstrate that the three stars do actually form a single, gravitationally bound, triple system.

Now three astronomers, Pierre Kervella, Frédéric Thévenin and Christophe Lovis, have concluded that the three stars do indeed form a bound system. In the century since it was discovered, Proxima Centauri’s faintness has made it extremely difficult to reliably measure its radial velocity — the speed at which it moves towards and away from Earth. But now ESO’s planet-hunting HARPS instrument has provided an extremely precise measurement of Proxima Centauri’s radial velocity, and even greater accuracy has been achieved by accounting for other subtle effects [1].

As a result, the astronomers have been able to deduce very similar values for the radial velocities of the Alpha Centauri pair and Proxima Centauri, lending credence to the idea that they form a bound system. Taking account of these new measurements, calculations of the orbits of the three stars indicate that the relative velocity between Proxima Centauri and the Alpha Centauri pair is well below the threshold above which the three stars would not be bound together by gravity.

This result has significant implications for our understanding of the Alpha Centauri system and the formation of planets there. It strongly suggests that Proxima Centauri and the Alpha Centauri pair are the same age (about 6 billion years), and that in turn provides a good estimate of the age of the orbiting planet, Proxima b.

The astronomers speculate that the planet may have formed around Proxima Centauri on a more extended orbit and then been brought to its current position, very close to its parent star, as a result of the close passage of Proxima Centauri to its cousins in the Alpha Centauri pair. Alternatively, the planet may have formed around the Alpha Centauri pair, and was later captured by the gravity of Proxima Centauri. If one of these hypotheses is correct, it is possible that the planet was once an icy world that underwent a meltdown and now has liquid water on its surface.

Notes

[1] Measurements of the stars’ velocities were made by observing specific features in their light known as spectral lines. Certain physical effects can shift the observed wavelengths of these lines, leading to incorrect measurements of the velocities. If a star has an unstable surface, it can cause what is known as convectiveblueshift of the spectral lines, while its gravity can lead to a gravitational redshift.

More Information

This research is presented in a paper to appear in the journal Astronomy and Astrophysics. 

The team is composed of P. Kervella, CNRS UMI 3386, University of Chile and LESIA, Paris Observatory; F. Thévenin, Côte d‘Azur Observatory, France; and Christophe Lovis, Observatoire astronomique de l’Université de Genève, Switzerland.

 

Contacts

Pierre Kervella

Universidad de Chile, CNRS UMI 3386 & LESIA, Paris Observatory

Camino El Observatoria 1515, Las Condes

Santiago, Chile

Email:

pkervell@das.uchile.cl

 

Frédéric Thévenin

Observatoire de la Côte d‘Azur

Boulevard de l’Observatoire

Nice, France

Email:

Frederic.Thevenin@oca.eu

 

Tel: +33 4 92 00 30 26

 

Christophe Lovis

Observatoire astronomique de l’Université de Genève,

51 Ch. des Maillettes,

1290 Versoix, Switzerland

Email:

christophe.lovis@unige.ch

 

Peter Grimley

ESO Assistant Public Information Officer

Garching bei München, Germany

Tel: +49 89 3200 6383

Email:

pgrimley@partner.eso.org

Share


20161222 - Fuente: ESO/CATA/DAS    

2024

2023

2022

2021

2020

2019

2018

2017

2016

2015

2014

2013

2012

2011

2010

2009

2008

See more